Skip to main content

Life123 : Quantitative Modeling of Biological Systems

(UPDATED 8/2022) - Are we ready to embark on a next-generation detailed quantitative modeling of complex biological systems, including whole-cell simulations? 

An anticipated up-jump in computing power may be imminent from Photonics computers (which I discuss here), and GPU's are rapidly gaining power as well...  Are we in ready state to put existing - and upcoming - power to good use?

This is a manifest, and a call to action

What's Life123?

It's about detailed quantitative modeling of biological systems in 1-D, 2-D and full 3-D, as well as a multi-faceted software platform for doing so.

What's (pseudo-)1D?  For now, let's say it's like the inside of a long, thin tube - with no interactions with the tube.  Likewise, (pseudo-)2D can be thought of as a Petri dish, with no interactions with the lid or the bottom.


A purposeful decision to also utilize 1D and 2D

But why?  Yes, it's in part about "walk before you run"...  but, more specifically, it's about the freedom to sometimes choose to avoid the distraction of higher dimensions, and focus on the essence of the features... and focus on incorporating good habits very early on, before the complexity, the long runs and the difficult visualizations of 3D come into being.

What good habits?  Just to mention a few:

COMPUTING:  GPU-assisted computing, parallelized computations utilizing multiple CPU cores and/or multiple computers.

MODELING:  variable spacial and temporal resolutions.  A modular approach of coarse-to-fine models as needed.  From very early on, the project will model reaction rates, chemical diffusion, membranes and cellular compartments.  Manage both "normal" concentrations and extremely-low ones (such as macro-molecules that are few in numbers.)

INTERACTIVE VISUALIZATION:  plots, graphs, heatmaps, etc, with interactive adjustable controls.  Extremely personalizable to deal with things like membranes and compartments.

UNIT TESTING: "an ounce of prevention is worth a pound of cure"

MODULARITY: being very disciplined in tackling a large software and data science project.

INFRASTRUCTURE / PLATFORM: a tight alliance between the tools of large-scale software engineering (such as IDE's), the tools of data science (such as JupyterLab) and of data engineering (such as Neo4j graph database.)

MULTIPLE AUDIENCES: address, in the platform and in the documentation, the background and needs of different classes of people, such as programmers, data scientists, chemists, biologists.


EXAMPLE.  In the modeling category, take variable spacial and temporal resolutions.  Let's say we have several chemical species that are in near-equilibrium, both in terms of diffusion and reactivity...  and then we have other species that - in some locations and some time periods - have highly variable concentration rates, perhaps because they're produced or consumed in reactions...

Do we really want to waste a lot of high resolution and computing power on the species, locations, time periods that are near-equilibrium?  Conversely, do we want to only coarsely simulate the highly dynamic species/locations/time periods?

Biology informs us that there's quite a range of time scales: for example, impulse firing in neurons is of the order of milliseconds...  while DNA replication is of the order of a hour.  Many orders of magnitude!

How do we best model variable spacial and temporal resolutions for some of the chemical species?  Well, Life123 is a great environment to tackle those design decisions, without being immediately slammed with the intricacies of full 3D!

Fundamental Goals 

  1. Detailed, quantitative biological simulations, including whole prokaryotic cells (bacteria), and later eukaryotic cells

  2. Deeper quantitative insight into human tissue/organ/system physiology, for the advancement of medicine

  3. A very integrative approach that is ultimate conducive to body-wide insights, with an eye to Longevity Science

  4. Explore the minimalist essence of life-like dynamical systems, including their evolution under "genetic algorithms" and other machine-learning approaches.  Also, explore chaotic states

  5. Investigate potential paths for the emergence of life on Earth and on Exoplanets

  6.  A community effort bringing together biologists, system biologists, programmers, machine-learning specialists, biochemists, power-computing engineers, doctors, chemical engineers, data scientists, visualization/UX experts, members of the public & institutions willing to share computing resources, etc.

What Life123 is *NOT*

  • A tool primarily for educational purposes
  • A computer game
  • An art project
  • A Reaction-Diffusion exercise as an end to itself
  • Molecular Dynamics (the reactions rates are assumed already known, or at least with interim estimated values)
  • Detailed modeling of the biophysics of membranes, etc.
  • A mathematical exercise in dynamical systems as an end to itself
  • Wolfram-style "cellular automata"
  • An exploration of hypothetical Physics in one or two dimensions

Note that "as an end to itself" is the operative phrase here; some of those categories do overlap with Life123

Broad Strategies ("Guiding Principles")

  • Aim big, for a simulation scale that may be impractical at the present... but attain a ready state to pounce on the latest advances in computing capabilities - in particular GPU computing, and possibly the upcoming Photonics Computing GPU accelerators

  • Not attempting to create a description and simulation of what happens at the molecular, or near-molecular level.  It's going to be much a much-coarser model that's still accurate enough to capture the essence of the cell's (or system's) behavior: for example, how it respond to inputs and what outputs it produces - what it absorbs, what it secretes, what it does with its internal state, including replication, etc.

    Excessive simulation detail with an ultra-fine spatial/temporal grid, could result in a possibly-excessive information content about the cell (or system): "excessive", in the sense that it may be beyond the information content required to describe the system's "computational capability." (broadly defined; see discussion on dynamical systems and theoretical aspects )

  • A mix of "bottom up" and "top down" approaches:

    "bottom up", as in starting with a minimalist scenarios with fictional molecules and rates, even in 2D or 1D, and gradually advancing to full 3D, real molecules and plausible diffusion/reactions rates, concentrations, etc...

    "top down", as in always setting the target on the final goal of realistic biological systems.  That will be the internal compass always guiding this project.

What does pseudo-1D/-2D mean?

PSEUDO is the operative word!  A true 1D or 2D world would be a speculative exercise in the Foundations of Physics...  In 1D, it'd be molecules on a string...  Would they be able to "pass" each other?  Fermions that can't occupy the same space?  Quantum tunneling to "slide over each other"?  How would force transmit across 1D?  (In 3D, force fields dilute with the square of distance... in 2D, with the distance... but in 1D?)
NO!  Life123 isn't about any of that!  If any physicist wants to chat on the side on fascinating concepts of actual 1D or 2D, by all means - but that's completely outside the scope and goals of this project.

Let's think of 1D more like a very thin, long tube of aqueous solution - minus the tube!  In particular, for example, no capillary effects!  Likewise, in 2D, think of the Petri-dish minus the actual dish!

How could 1D or 2D simulations ever be realistic?

They can't - and aren't meant to.  Remember, simulations in 1D and 2D is all about setting up good practices in computing, data modeling, chemical and biological modeling, as a crutch to fully 3D- simulations.


  • Python
  • NumPy
  • JupyterLab
  • Custom visualizations with D3.js and Vue.js (a great alliance I discuss here)
  • Network visualizations with cytoscape.js
  • GPU acceleration
  • Multi-core computing, perhaps making use of Dask
  • Distributed computing
  • Neo4j Graph databases (a lot of full-stack infrastructure for that is available thru the open-source sister project Brain Annex)
  • TensorFlow machine learning
  • Unit testing with PyTest


  • Chemical diffusion
  • Chemical reaction rates
  • Coupled reactions, together with diffusion 
  • Diffusion across membranes (passive and active transport)
  • Temperature effects


  • Cellular compartments
  • Macro molecules
  • Transcription/Translation
  • Replication

Isn't this overly ambitious?

To paraphrase former president J. F. Kennedy's famous speech about going to the Moon:

We choose to purse quantitative modeling of complex biological systems not because they are easy, but because they are hard;  because that challenge is one that we are willing to accept, one we are unwilling to postpone, and one we intend to win!

Where does the project currently stand?

[8/2022 update in box below!]  

As of today, with the propitious date (in U.S. format) of  3.14, I am officially releasing to open source the early Beta version of the Life123 platform: GitHub repository

Accompanying the software at this relatively early stage is:

  • This project's "manifesto"
  • A "call to arms" to the community, to be possibly followed by a Discord channel to coordinate. For now, ALL DISCUSSION will take place here
  • A new website:
This project originates from years of discussions I've had with colleagues in the pharmaceutical industry, researchers, and academicians...  as well as papers such as A Whole-Cell Computational Model Predicts Phenotype from Genotype...  and from my own professional background in computing, machine learning, molecular biology, bioinformatics and systems biology.  
The current platform stems from early research I carried out in 2020, and active development of the alpha version in late 2021 thru the present.

The underlying philosophical framework is detailed in this entry I wrote in 2019.

August 2022 UPDATE: the platform (repo) is shaping up nicely, and entering a late Beta stage.

In particular, the infrastructure to create interactive visualizations, possibly custom ones (with plotly, Vue.js and D3.js) is getting more polished and streamlined. 
The cytoscape.js library has been brought in for network visualizations.

The website is much more substantial, and existing notebooks and their visualizations are just a click away.
A live demo of all JupyterLab notebooks is also one click away!  
Ways for you to get involved are getting spelled out in more detail

Micro-blogging, ready to later turn into an early discussion platform, was added.

With the recently-released Beta 12 version (change-log), Life123 has by now established a substantial amount of the infrastructures for data science, software management and visualization - for diffusion and (single binding site) reactions.

The really interesting stuff is now just starting!  Upcoming releases will be introducing elements that have been on the table from the very inception of the project:

- membranes
- macro-molecules (with multiple binding sites)
- passive/active transport across membranes

How to scale up?

This is a community project meant to bring together a wide variety of skill sets

In the early fall,  as the foundations get more solid, I'll start publicizing the project, and actively seeking collaborators.

Down the line, some non-profits and companies may opt to get involved.  Perhaps philanthropists and/or investors as well.

A Call to the Community

This is an open call to researchers, academicians, computer scientists, students, colleagues in the pharmaceutical industry, doctors, philanthropists, members of the public.

In the Longevity-Science community, which I've been active in - and at times working in - for a number of years, I hear a lot of "how can I help?"  Well, here's a way!

Do you have skills in:

  • Biology
  • Python programming
  • CUDA programming, or other ways to utilize GPU computing
  • TensorFlow and/or other machine learning 
  • Plotly or D3.js visualization
  • UX 
  • Chemical engineering 
  • Biochemistry
  • Biophysics
  • Systems biology
  • Bioinformatics
  • Medicine
  • Web design
  • Technical writing
  • QA / DevOps
Or do you have access to:
  • Computing resources - such as your own gaming PC, or your company's computing (if you're authorized)
  • Funds for research projects, philanthropy or investments
  • Ways to spread the word (social media, etc)
We need you in all of the above scenarios, and more!  Help us design, implement, test, refine and run the simulations and the platform to scale.
I expect to later start a Discord channel.  For now, all discussions (as well as micro-blogging) will take place here.  Also, you're welcome to reach me on LinkedIn or on my professional Facebook account.

The website has a page detailing areas of potential involvement for people with particular skillsets.


Popular posts from this blog

Graph Databases (Neo4j) - a revolution in modeling the real world!

(UPDATED 9/2022) - I was "married" to Relational Databases for many years... and it was a good "relationship" full of love and productivity - but SOMETHING WAS MISSING! Let me backtrack.   In college, I got a hint of the "pre-relational database" days...  Mercifully, that was largely before my time, but  - primarily through a class - I got a taste of what the world was like before relational databases.  It's an understatement to say: YUCK! Gratitude for the power and convenience of Relational Databases and SQL - and relief at having narrowly averted life before it! - made me an instant mega-fan of that technology.  And for many years I held various jobs that, directly or indirectly, made use of MySQL and other relational databases - whether as a Database Administrator, Full-Stack Developer, Data Scientist, CTO or various other roles. But there were thorns in the otherwise happy relationship The root cause: THE REAL WORLD DOES NOT REALLY RESEMBLE THE

D3 Visualization with Vue.js : a powerful alliance (when done right!)

[UPDATED MAY 2022]  D3.js is a very powerful visualization tool, especially for specialized/custom needs...  On the flip side, it's rather hard to use - with a steep learning curve. Even worse if one also wants interactivity ! But why is D3 so hard/clunky to use?  And what can be done about it? Spoiler alert: Vue.js (or other modern front-end framework) to the rescue - if done right... All code in the examples is available in this GitHub repository . The Root of the Problem In a nutshell, what makes D3 awkward to use is that, for historical reasons, it tries to do too much : most painfully, it uses an old way to do direct DOM manipulation (i.e. restructuring the page layout) - an operation that nowadays is superbly handled in a far more friendly way by modern front-end frameworks, such as Vue.js Document Object Model ( DOM ) is a programming interface for web documents.  In simple terms, it's the structure of the elements on a web page (text, images, etc.) Let the front-e

A "Seismic Shift" in Longevity Science : Mainstream Acceptance + Large Funding

"You are incredibly prescient!"   I woke up to those words from a former colleague on Jan. 19, 2022: the bombshell announcement that the Chief Science Officer of pharma giant GSK, where I worked until recently, will become the CEO at the new, $3 BILLION longevity science company Altos (presumably also funded by Amazon's Jeff Bezos.) Big Pharma is at long last embracing Longevity Science. The corollary: longevity science is entering Mainstream (with capital "M") But let me backtrack... The Decade of Longevity Science When Harvard professor David Sinclair declared the 2020's to be the " decade of the paradigm shift about age reversal ", one could perhaps be dismissive of it as just an outburst of enthusiasm... But in the past couple of years, we're seeing strong evidence that his forecast is right on the mark! While I worked at GlaxoSmithKline - a giant, top-10, pharma company - I vigorously advocated forming a Longevity Science dept., and sp

Online Courses: (Often) Free and Just Awesome!

“Education is the kindling of a flame, not the filling of a vessel.” -Socrates.  [UPDATED Mar. 2021] Acquiring knowledge has been a hobby of mine since 4th grade, so it's no surprise that I'm the proverbial "kid in the candy store" when it comes to online courses!   As of writing, I have followed over 20 so far, and trying to decide what the next one will be... Utopia or Dystopia? You ever find yourself imagining the future, and wondering whether it'll turn out to be “utopian” or “dystopian”? Well, the state of higher education in the United States is decisively dystopian , with its absurdly ballooned costs and runaway student loans (a “bubble” that may burst sooner or later, mark my words!),  BUT there’s a counterpoint that is decisively utopian , namely the explosive rise of free online courses 😊 Here’s a brief 2012 Ted talk about the rise of free online courses , dated but still of interest. The gist of that TED talk is that online learning has com

Multimedia Knowledge Representation and Management : "Brain Annex"

 (Updated Feb. 2022) Wouldn't it be fantastic to have a "butler" to help us as we constantly face drowning in information? That need was crushingly pressing for me , as a polymath with a thirst for knowledge in several fields, not to mention numerous very technical jobs over the years, several complex research projects, old notes from college and grad school, an endless stream of online courses I take , a tech startup I founded and used to run, the many conferences I attend, life in general, and even hobbies that tend to generate abundant information (such as flying airplanes and studying multiple foreign languages!)   I was immensely eager for some sort of powerful assistance, something so helpful that I could poetically describe as an " annex " to my brain.. In this blog entry, I'll describe how deep frustration with existing software tools led to the start of the open-source project, a web-based knowledge representation and manageme

Anti-Aging Research: Science, not Hype

Last updated November 2021 Q: "How is aging a disease?" A: "It's a dynamic system that veers away from its homeostasis (normal equilibrium point): hence a form of slow-progressing illness. Labeling it as 'natural' is a surrender to our traditional state of ignorance and powerlessness, which fortunately is beginning to be changed!" The above is my standard answer to an oft-asked question. The science of aging is by all evidence very misunderstood by the general public.  Hype, misinformation and unquestioned assumptions often prevail, unfortunately. Aging as a systemic breakdown of the body, rather than a series of isolated events and conditions. This 2013 diagram from NIH is a good way to jump-start contemplating the big picture: The diagram originates from the Cell journal: The Hallmarks of Aging   Telomere shortening is perhaps the one most talked about - but just one of several processes.  As stated in the above paper: Each

Interactomics + Super (or Quantum) Computers + Machine Learning : the Future of Medicine?

[Updated Mar. 2021] Interactomics today bears a certain resemblance to genomics in the  1990s...  Big gaps in knowledge, but an explosively-growing field of great promise. If you're unfamiliar with the terms, genomics is about deciphering the gene sequence of an organism, while interactomics is about describing all the relevant bio-molecules and their web of interactions. A Detective Story Think of a good police-detective story; typically there is a multitude of characters, and an impossible-to-remember number of relationships: A hates B, who loves C, who had a crush on D, who always steers clear of E, who was best friends with A until D arrived... Yes, just like those detective stories, things get very complex with our biological story!  Examples of webs of interactions, familiar to many who took intro biology, are the Krebs cycle for metabolism or the Calvin cycle to fix carbon into sugars in plant photosynthesis. Now, imagine vastly expanding those cycles of rea

Brain Microarchitecture : Feedback from Higher-order areas to Lower-order areas

Some questions that arise in Machine Learning involve the prospect of using feedback from Higher-order areas (downstream) to Lower-order areas (upstream), and using Global Knowledge for Local Processing.  A desire to gain insight into those issues from Neuroscience ("how does the brain do it?") led me to some fascinating investigations into the Microcircuits of the Cerebral Cortex.  This blog entry is a broad review of the field, in the context of the original motivating questions from Machine Learning.   Starting out with a quote from the “bible of Neuroscience”: From Principles of Neural Science, 5th edn  (Online book location 1435.3 / 5867).  Emphasis and note added by me: Sensory pathways are not exclusively serial; in each functional pathway higher-order areas project back to the lower-order areas from which they receive input. In this way neurons in higher-order areas, sensitive to the global pattern of sensory input, can modulate the activity of neurons in lowe

Photonic Computer - a "supercharged GPU" with very low energy consumption

Yes, we all wish for Quantum Computers... but in the meantime we need something here and now!  Could Photonic Computers fit that role? Just about everyone has heard of fiber optics – using light for data transmission – but did you know that light can also be used for computing? There's a new commercial product expected for early next year (2022) . I contacted the CEO, Nicholas Harris, of a 4-y.o. startup, Lightmatter , interviewed in April 2021 here . Photonic computers, at least in their first commercial appearance, are essentially accelerator cards for Linear Algebra - and so of special interest for Machine Learning and some types of simulations.    Their claims are remarkable: 10X faster than some of the best GPUs using 90% less energy can be used with existing software stacks, such as TensorFlow commercially available early next year (2022) a lot of future growth, as additional wavelengths of light get used in parallel My own interest is pr